Skip to main content
Skip to main content
Polkadot logo

Polkadot Consensus Part 4: Security

So far, we have discussed how BABE creates blockchain candidates and GRANDPA finalizes them. We know that we need more than two-thirds of validators to properly follow the protocol. But how many validators are there? How are they chosen? Why should they follow the rules?

By Joe PetrowskiDecember 18, 2019

This is part 4 in our Polkadot consensus series. See part 1 for the introduction, part 2 for a discussion about GRANDPA, and part 3 for a discussion about about BABE.

So far, we have discussed how BABE creates blockchain candidates and GRANDPA finalizes them. We know that we need more than two-thirds of validators to properly follow the protocol. But how many validators are there? How are they chosen? Why should they follow the rules?

Elections and Eras

For validators to know that a block has more than two-thirds agreement, GRANDPA needs to know how many validators there are in total. The chain’s governance process sets (and can change) the number, but the goal is to have at least 1,000 validators running BABE and GRANDPA in Polkadot.

Once we know how many validators there will be in the set, we hold an election to decide who gets to be a validator. Just as BABE breaks time into epochs, GRANDPA breaks time into eras. At the end of each era, rewards for the past era are paid, and an election takes place for the next era. Eras are planned to be about 24 hours long.

Polkadot uses nominated proof of stake (NPoS) to elect validators and Phragmen’s method to perform the election. The introduction discussed that security in a proof-of-stake network is related to the value at risk. Users signal their intent to participate in the security of the network by locking funds, called staking.

While the number of validators is limited, the number of people who can participate in the security of the network by staking is not. If you are not a validator, you can still participate by nominating. Nominators stake their funds and select up to 16 validators that they trust to validate on their behalf. Nominators share in the rewards, but also the punishment, of the validators that they back.

One of Polkadot’s objective functions is having an evenly staked validator set. Rewards are paid based on performance, not based on stake, so a nominator will get a higher rate of return by staking behind smaller validators.

We optimize this stake distribution using Phragmen’s method. Prior to an election, there is a list of accounts wishing to become validators. Each validator has a list of potential nominators. Phragmen’s method will first pick the winners by figuring out the combination that will lead to having the most value at stake. Once it knows the set, it will apply the nominations in such a way that will lead to the most evenly staked set. This outcome will lead to the highest security for the network and most rewards for the nominators.

Rewards

Rewards are the primary incentive for people to run validators on the network. As discussed in parts 2 and 3, validators run the BABE and GRANDPA protocols to create and finalize the Polkadot blockchain.

Unlike other proof-of-stake protocols, Polkadot determines rewards based on validator activity and not based on how much each validator has at stake. Validators accumulate points based on their activity. Points are primarily assigned for signing validity statements and producing blocks that are included in the canonical chain. Some additional points are issued for the production of blocks that do not end up in the canonical chain.

Points do not have a corresponding dot value until the end of the era, when we know the total number of points issued in the era. The total reward of an era is divided among validators based on how many points each one accumulated relative to the total. Then, the reward is divided among each validator’s nominators.

Following the reward system is simple. By running the standard client and having a high-availability network architecture, validators will be able to properly follow the protocols and earn points.

Discipline and Punish

Rewards provide the reason to stake, but the network must make sure that stakers follow the rules. Slashing is the punishment for failing to follow the protocol. The security of the network requires that the punishment for attempting an attack is so great as to prevent the attack from occurring.

Infractions range from plainly lackadaisical to downright mendacious. The most basic requirement for a validator is to be online and available. A validator proves its availability either by authoring a block or by sending a heartbeat message to the network. Slashes for being offline are quite low because every system can experience periodic downtime within reason. As long as a validator takes proper care of their infrastructure configuration, though, downtime should be a rare event, and the slash is small enough to recover from.

A more serious transgression is equivocation. Equivocation can occur in both BABE and GRANDPA. In BABE, equivocation is producing two blocks in the same slot. In GRANDPA, it is sending pre-vote or pre-commit messages for two chains that conflict with each other in the same round. Equivocation comes with a severe slash. If too many validators equivocate, it would be impossible to select a single, canonical chain.

Some behavior can be slashed up to 100% of the amount at stake. These actions would be in extreme cases, such as casting pre-votes or pre-commits for a chain that conflicts with the chain that is already final. The network considers such behavior is an attack because it is attempting to revert finalized blocks.

Super-linear Slashing

You may have already noticed that rewards are not related to stake, so if you have enough funds to run two validators, you could double your rewards.

This behavior is encouraged. We expect single entities — be they large holders or staking-as-a-service providers — to run multiple validators. There is nothing Polkadot can do to prevent certain entities from acquiring large amounts of stake and running validators. To protect against a single entity gaining too much power, Polkadot can make them increase their value at risk should they try anything nefarious.

Polkadot uses super-linear slashing. As the number of validators who commit an offense increases, so does the percentage of the slash. For example, if a single validator equivocates, it could be due to a poor infrastructure setup. However, if 30% of the validators equivocate in one round, it is more likely to be a coordinated attack and the slash will be more severe.

As more validators equivocate, the slashing severity increases. When over 33% of validators equivocate, an event that would halt the network, the offenders are slashed 100%.

As a single entity adds more validators to the network, it will have to ensure that the validators are not dependent on each other or any centralized service.

Shared Security

Security in proof-of-stake networks depends on economics, so there can only exist a limited amount of security in the world because economic value is, by definition, limited. As the number of blockchains increases due to scaling issues on single chains, their economic value — and therefore their security — gets spread out over multiple chains, leaving each one weaker than before.

Smart contracts that execute in a shared execution environment, like the Ethereum Virtual Machine, can interact without trust bounds. With Polkadot, the logic interface moved from a single execution environment in a blockchain to the blockchain’s logic itself.

But when considering how to make chains interact while breaking out of trust bounds, one must realize that trust does not come from executing in the same environment. Trust comes from operating under the same economic and state transition guarantees.

Polkadot introduces a shared security model so that chains can interact with others while knowing full well that their interlocutors have the same security guarantees as their own chain. Bridge-based solutions — where each chain handles its own security — force the receiver to trust the sender. Polkadot’s security model provides the necessary guarantees to make cross-chain messages meaningful without trusting the security of the sender.

The Relay Chain blocks mostly consist of proofs of validity from parachains, meaning that when the Relay Chain validates a parachain’s state transition and includes a proof in the finalized Relay Chain, the parachain’s block is also final. To revert the parachain’s block, an attacker would have to revert the entire Polkadot system, including every single parachain. Security doesn’t compete; it adds.

This system of sharing security by sharing state in the Relay Chain obviates the need for parachains to even provide their own security and validator community. Polkadot’s Relay Chain provides this economic guarantee so that chains in the Polkadot ecosystem can focus on the logic that drives their application.

To learn more about consensus and economics in Polkadot, visit the Polkadot Wiki.

From the blog

Governance, side by side: Polkadot, Ethereum, and NEAR

Decentralized Mic pulled together experts from leading experts from Polkadot, Ethereum, and NEAR to discuss decentralized decision-making approaches, address participation challenges, and explore the potential impact of AI on future governance models.

Where real-world value meets access: How Polkadot powers RWA and DePIN

Polkadot is making real-world assets and infrastructure accessible through tokenization, unlocking new opportunities in finance and energy for everyday participants and communities.

Understanding DeFi: A starter guide to decentralized finance

DeFi transforms traditional finance by replacing banks and brokers with smart contracts on blockchain networks. Discover how dapps enable lending, trading, and earning interest without intermediaries—and how Polkadot’s interoperability brings these tools together for a connected financial future.

The evolution of digital ownership: How tokenization is transforming gaming, music, and beyond

Tokenization is redefining digital ownership in gaming and music, enabling players and artists to control their assets. With blockchain, NFTs, and Polkadot’s interoperability, digital economies are becoming more decentralized, secure, and accessible.

Web3 funding playbook for builders, creators, and founders

Discover funding opportunities in the Polkadot ecosystem, from grants and bounties to venture capital and community-driven fundraising. Explore pathways for builders at every stage, with insights on securing support for DeFi, DePIN, AI, gaming, and real-world asset tokenization.

From speculation to sustainability: Top ETHDenver takeaways

ETHDenver 2025 highlighted Web3’s shift toward sustainability, emphasizing talent development, decentralized governance, and aligned incentives. Polkadot’s insights reinforced the industry’s move beyond speculation toward long-term, community-driven growth.

Build, Play, Connect: Join Polkadot at ETHDenver 2025

Get ready for ETHDenver 2025 with Polkadot! Join Polkadot for keynotes, hacker houses & parties, immersive booth experiences, and hands-on workshops. Whether you’re building, playing, or connecting, there’s something for everyone at one of blockchain’s biggest events.

The most impactful blockchain use cases in 2025 and why Polkadot is leading the way

Explore the top blockchain trends of 2025, from decentralized AI and tokenized assets to enterprise adoption and Web3 gaming. Learn how projects powered by Polkadot are shaping the future of finance, infrastructure, and digital identity.

Decentralization’s ripple effect: How Web3 is rewriting digital sovereignty

Centralized platforms dictate access, control data, and pose security risks, leaving individuals without control over their digital presence. Decentralization offers a resilient alternative, paving the way to a digitally sovereign future.

Developing Analog's Timechain: Why we chose Polkadot SDK

Discover why Analog chose Polkadot SDK to power its Timechain, leveraging modularity, security, and forkless upgrades to create a seamless interoperability hub for multichain and cross-chain dapp ecosystems.

Polkadot Roundup MMXXIV

Dive into Polkadot Roundup MMXXIV for an in-depth look at 2024 milestones, including high-performance rollups, decentralized governance, and exciting expansions. Discover how Polkadot is evolving into a next-level web3 platform—plus a sneak peek at Polkadot 2, Polkadot 3, and the JAM protocol supercomputer.

Unifying Polkadot’s developer docs: A new chapter for builder experience

The PaperMoon team, supported by a Decentralized Futures grant, launches the Polkadot Developer Documentation Hub, a unified platform that simplifies developer onboarding and provides access to essential resources. This marks a transformative step for builders in the Polkadot ecosystem.